.. CHIMES Driver UV Field Alexander Richings, 5th March 2020 .. _ChimesDriverUVField_label: UV Field -------- The UV radiation field used in the chemistry solver can be specified via the ``UV_field`` parameter. The possible options are described in detail below. +-------------------------------------+------------------------------------------------------------------------------+ | UV Field | Description | +=====================================+==============================================================================+ | ``None`` | | No UV radiation field is used. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``HM01`` | | Uses the extragalactic UV background from Haardt & Madau (2001). Note | | | | that ``chimes-data`` currently only includes the cross-sections data at | | | | redshift zero for this UVB. The normalisation of this radiation field | | | | from the cross sections table is multiplied by the | | | | ``radiation_field_normalisation_factor`` from the parameter file. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``HM12`` | | Uses the extragalactic UV background from Haardt & Madau (2012). It will | | | | interpolate the redshift-dependent cross sections and radation field | | | | strength from the HM12 cross sections tables in ``chimes-data`` to the | | | | current redshift as given by the ``redshift`` parameter. If | | | | ``redshift > reionisation_redshift``, the UVB is set to zero. | | | | The normalisation of this radiation field from the cross sections table | | | | is multiplied by the ``radiation_field_normalisation_factor`` from | | | | the parameter file. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``FG20`` | | Uses the extragalactic UV background from Faucher-Giguere (2020). It will | | | | interpolate the redshift-dependent cross sections and radation field | | | | strength from the FG20 cross sections tables in ``chimes-data`` to the | | | | current redshift as given by the ``redshift`` parameter. If | | | | ``redshift > reionisation_redshift``, the UVB is set to zero. | | | | The normalisation of this radiation field from the cross sections table | | | | is multiplied by the ``radiation_field_normalisation_factor`` from | | | | the parameter file. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``B87`` | | Uses the interstellar radiation field in the local solar neighbourhood in | | | | the Milky Way, from Black (1987). The normalisation of this radiation | | | | field from the cross sections table is multiplied by the | | | | ``radiation_field_normalisation_factor`` from the parameter file. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``Colibre`` | | Uses the radiation field model developed for the Colibre simulations. In | | | | brief, this uses the SP20 redshift-dependent extragalactic UV background | | | | plus the interstellar radiation field (ISRF) from Black (1987) scaled | | | | relative to the ISRF in the Milky Way based on the Jeans column density. | | | | This is based on the model of Ploeckinger & Schaye 2020, albeit with | | | | some modifications. The ``radiation_field_normalisation_factor`` | | | | parameter is not used here. Instead, the ISRF component can be | | | | re-normalised using the ``colibre_scale_MW_ISRF`` parameter. Colibre | | | | uses a fiducial value of ``0.01`` for this parameter. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``StellarFluxes`` | | Uses the redshift-dependent FG20 extragalactic UV background, plus the | | | | stellar fluxes from the star particles using the UV spectra from | | | | Starburst 99 models (Leitherer et al. 2014) in 8 stellar age bins. See | | | | Richings et al. (in prep) for details. Note that the | | | | ``radiation_field_normalisation_factor`` parameter is not used here. | | | | +-------------------------------------+------------------------------------------------------------------------------+ | ``S04`` | | Uses the average quasar UV spectrum from Sazonov et al. (2004). The | | | | normalisation of the spectrum is determined by the bolometric AGN | | | | luminosity, specified via the ``bolometric_AGN_luminosity_cgs`` | | | | parameter, and the distance to the AGN. If ``IO_mode`` is set to | | | | ``grid``, the distance is specified via the ``distance_to_AGN_kpc`` | | | | parameter. If ``IO_mode`` is set to ``snapshot``, we instead specify | | | | the position of the AGN via the ``AGN_position_x_kpc``, | | | | ``AGN_position_y_kpc`` and ``AGN_position_z_kpc`` parameters. The | | | | distance from the AGN to each gas particle is then calculated separately. | | | | +-------------------------------------+------------------------------------------------------------------------------+ References ^^^^^^^^^^ | `Black (1987) `_ | `Faucher-Giguere (2020) `_ | `Haardt & Madau (2001) `_ | `Haardt & Madau (2012) `_ | `Leitherer et al. (2014) `_ | `Ploeckinger & Schaye (2020) `_ | `Sazonov et al. (2004) `_